Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e25246, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38322950

RESUMO

In quest of developing an efficient and effective drug against the ACHN human renal adenocarcinoma cell line herein, we report the synthesis and characterization of a novel Pyridinium iodide-tagged Schiff base (5) and its Cu (II)/Zn (II)/Cd (II)-complexes (6). The synthesized compounds are well characterized by Elemental analysis, UV-Visible, FTIR, Magnetic Susceptibility, NMR, HRMS, MALDI, and PXRD techniques. They were then subsequently tested on the ACHN cell lines using MTT assays and their IC50 values were determined, followed by their ROS production capacity. Among the tested compounds Zn (II)-complex 6(b) was found to be the most potent one with a minimum IC50 value while the ligand (5) was the least.

2.
J Mol Struct ; 1224: 129178, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32904625

RESUMO

Four novel ionic liquid tagged azo-azomethine derivatives (L1-L4) have been prepared by the condensation reaction of azo-coupled ortho-vaniline precursor with amino functionalised imidazole derivative and the synthesized derivatives (L1-L4) have been characterized by different analytical and spectroscopic techniques. Molecular docking studies were carried out to ascertain the inhibitory action of studied ligands (L1-L4) against the Main Protease (6LU7) of novel coronavisrus (COVID-19). The result of the docking of L1-L4 showed a significant inhibitory action against the Main protease (Mpro) of SARS-CoV-2 and the binding energy (ΔG) values of the ligands (L1-L4) against the protein 6LU7 have found to be -7.7 Kcal/mole (L1), -7.0 Kcal/mole (L2), -7.9 Kcal/mole (L3), and -7.9 Kcal/mole (L4).The efficiency of the ligands has been compared with the FDA approved and clinically trial drugs such as remdesivir, Chloroquin and Hydroxychloroquin and native ligand N3 of main protease 6LU7 to ascertain the inhibitory potential of the studied ligands (L1-L4) against the protein 6LU7. Pharmacokinetic properties (ADME) of the ligands (L1-L4) have also been studied.

3.
J Mol Struct ; 1225: 129230, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32963413

RESUMO

A series of six novel imidazole anchored azo-imidazole derivatives (L1-L6) have been prepared by the simple condensation reaction of azo-coupled ortho-vaniline precursor with amino functionalised imidazole derivative and the synthesized derivatives (L1-L6) have been characterized by different analytical and spectroscopic techniques. Molecular docking studies were carried out to ascertain the inhibitory action of studied ligands (L1-L6) against the Main Protease (6LU7) of novel coronavirus (COVID-19). The result of the docking of L1-L6 showed a significant inhibitory action against the Main protease (Mpro) of SARS-CoV-2 and the binding energy (ΔG) values of the ligands (L1-L6) against the protein 6LU7 have found to be -7.7 Kcal/mole (L1), -7.4 Kcal/mole (L2), -6.7 Kcal/mole (L3), -7.9 Kcal/mole (L4), -8.1 Kcal/mole (L5) and -7.9 Kcal/mole (L6). Pharmacokinetic properties (ADME) of the ligands (L1-L6) have also been studied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...